Check if Any Element is True in DataFrame

To check if any element is True or non-zero or non-empty in DataFrame, over an axis, call any() method on this DataFrame.

In this tutorial, we will learn the syntax of DataFrame.any() method and how to use this method to check if at least one element in DataFrame along an axis is True or non-zero or non-empty.

Syntax

The syntax of pandas DataFrame.any() method is

</>
Copy
DataFrame.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)

where

ParameterValueDescription
axis{0 or ‘index’, 1 or ‘columns’, None}.
default value is 0.
Indicate which axis or axes should be reduced. 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels. 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index. None : reduce all axes, return a scalar.
bool_onlybool.
default value is None.
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
skipnabool.
default value is True.
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
levelint or level name.
default value is None.
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
**kwargsany.
default value is None.
Additional keywords have no effect but might be accepted for compatibility with NumPy.

Return Value

  • DataFrame: If level is specified or
  • Series

Examples

Check if Any of Element in Column is True

In the following program, we take a DataFrame and check if any of its element in columns is True.

Example.py

</>
Copy
import pandas as pd

data = {'col_0': [0, 0, 2, 4], 'col_1': [0, 0, 0, 0]}
df = pd.DataFrame(data)

result = df.any()
print(result)

Output

col_0     True
col_1    False
dtype: bool

Check if Any of Element in Row is True (axis=1)

In the following program, we take a DataFrame and check if any of its element in rows is True.

Pass axis=1 to any() method.

DataFrame

Example.py

</>
Copy
import pandas as pd

data = {'col_0': [0, 0, 2, 4], 'col_1': [0, 0, 0, 0]}
df = pd.DataFrame(data)

result = df.any(axis=1)
print(result)

Output

0    False
1    False
2     True
3     True
dtype: bool

Do not Skip NA Values (skipna=False)

If we would like to consider NA values as True, then pass skipna=False to any() method.

Example.py

</>
Copy
import pandas as pd
import numpy as np

data = {'col_0': [0, 0, 0, 0], 'col_1': [np.nan, 0, 0, 0]}
df = pd.DataFrame(data)

result = df.any(skipna=False)
print(result)

Output

col_0    False
col_1     True
dtype: bool

np.nan is True if skipna=False.

Conclusion

In this Pandas Tutorial, we learned how to using pandas DataFrame.any() method.