Mean of DataFrame
To find the mean of the values over rows or columns in DataFrame in Pandas, call mean() method on this DataFrame. mean() method returns a Series with the mean calculated over specified axis.
In this tutorial, we will learn how to find the mean of values along index or columns of a DataFrame using DataFrame.mean() method.
Syntax
The syntax of pandas DataFrame.mean() method is
DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
where
Parameter | Value | Description |
---|---|---|
axis | {index (0), columns (1)} | Axis for the function to be applied on. |
skipna | bool, default True | Exclude NA/null values when computing the result. |
level | int or level name, default None | If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. |
numeric_only | bool, default None | Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. |
**kwargs | Additional keyword arguments to be passed to the function. |
Return Value
- Series or
- DataFrame (if level specified)
Examples
Mean of DataFrame for Columns
By default, the mean is calculated for columns (axis=0) in a DataFrame.
In the following program, we take a DataFrame two columns containing numerical data, and find the mean.
Example.py
import pandas as pd
df = pd.DataFrame({'a': [1, 4], 'b': [3, 4]})
result = df.mean()
print(result)
Output
a 2.5
b 3.5
dtype: float64
Mean of DataFrame for Rows
To compute the mean of DataFrame along rows, pass axis=1
in call to mean() method.
Example.py
import pandas as pd
df = pd.DataFrame({'a': [1, 4], 'b': [3, 4]})
result = df.mean(axis=1)
print(result)
Output
0 2.0
1 4.0
dtype: float64
Do not skip NA while finding Mean
By default, NA values like None, np.nan, etc are ignored. But if we would like consider those values as well, pass skipna=False
to mean() method.
Example.py
import pandas as pd
df = pd.DataFrame({'a': [1, None], 'b': [3, 4]})
result = df.mean(skipna=False)
print(result)
Output
a NaN
b 3.5
dtype: float64
If any of the values is NA, then the mean would be considered as NaN.
Conclusion
In this Pandas Tutorial, we learned how to find the mean of DataFrame along rows or columns using pandas DataFrame.mean() method.