Replace NaN values with Zero in Specific Column(s)
To replace NaN values with Zero in Specific Column of DataFrame, first access the column(s) using indexing, and then call fillna() method. Pass 0 as argument to fillna() method.
In this tutorial, we will learn how to replace NaN values with 0 in specified columns using DataFrame.fillna() method.
Examples
Replace NaN with 0 in only One Column of DataFrame
In the following program, we fill NaN values of col_0
only.
Example.py
</>
Copy
import pandas as pd
import numpy as np
data = {'col_0': [11, np.nan, np.nan, np.nan], 'col_1': [np.nan, 55, 77, 66]}
df = pd.DataFrame(data)
df['col_0'] = df['col_0'].fillna(0)
print(df)
Output
col_0 col_1
0 11.0 NaN
1 0.0 55.0
2 0.0 77.0
3 0.0 66.0
Replace NaN with 0 in Two Columns of DataFrame
In the following program, we fill NaN values of col_0
and col_1
.
Example.py
</>
Copy
import pandas as pd
import numpy as np
data = {'col_0': [11, np.nan, np.nan, np.nan], 'col_1': [np.nan, 55, 77, 66], 'col_2': [np.nan, 99, np.nan, 88]}
df = pd.DataFrame(data)
cols = ['col_0', 'col_1']
df[cols] = df[cols].fillna(0)
print(df)
Output
col_0 col_1 col_2
0 11.0 0.0 NaN
1 0.0 55.0 99.0
2 0.0 77.0 NaN
3 0.0 66.0 88.0
Conclusion
In this Pandas Tutorial, we learned how to replace NaN values in select column(s) with 0 using DataFrame.fillna() method.