NumPy float_power()
The numpy.float_power() function raises each base in x1 to the positionally corresponding power in x2, element-wise. Unlike the regular power() function, it ensures a minimum floating-point precision of float64 for accurate results, even when using lower-precision data types.
Syntax
</>
                        Copy
                        numpy.float_power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True)Parameters
| Parameter | Type | Description | 
|---|---|---|
| x1 | array_like | Base values to be raised to the power. | 
| x2 | array_like | Exponent values. Must be broadcastable with x1. | 
| out | ndarray, None, or tuple of ndarray and None, optional | Optional output array where the result is stored. If None, a new array is created. | 
| where | array_like, optional | Boolean mask specifying which elements to compute. Elements where where=Falseretain their original value. | 
| casting | str, optional | Defines the casting behavior when computing the function. | 
| order | str, optional | Memory layout order of the output array. | 
| dtype | data-type, optional | Defines the data type of the output array. | 
| subok | bool, optional | Determines if subclasses of ndarray are preserved in the output. | 
Return Value
Returns an array where each element is the base from x1 raised to the exponent in x2. If both x1 and x2 are scalars, a scalar is returned.
Examples
1. Computing Power of Single Values
Here, we compute 2.5 raised to the power of 3.
</>
                        Copy
                        import numpy as np
# Define base and exponent values
base = 2.5
exponent = 3
# Compute power
result = np.float_power(base, exponent)
# Print the result
print("2.5^3 =", result)Output:
2.5^3 = 15.625
2. Computing Power for Arrays
We compute the power for an array of bases and an array of exponents.
</>
                        Copy
                        import numpy as np
# Define base and exponent arrays
bases = np.array([1, 2, 3, 4, 5])
exponents = np.array([2, 3, 4, 5, 6])
# Compute power
result = np.float_power(bases, exponents)
# Print the results
print("Bases:", bases)
print("Exponents:", exponents)
print("Result:", result)Output:
Bases: [1 2 3 4 5]
Exponents: [2 3 4 5 6]
Result: [   1.    8.   81. 1024. 15625.]
3. Using the out Parameter
Using an output array to store results instead of creating a new array.
</>
                        Copy
                        import numpy as np
# Define base and exponent arrays
bases = np.array([2, 3, 4])
exponents = np.array([3, 2, 1])
# Create an output array with the same shape
output_array = np.empty_like(bases, dtype=np.float64)
# Compute power and store the result in output_array
np.float_power(bases, exponents, out=output_array)
# Print the results
print("Computed power values:", output_array)Output:
Computed power values: [8. 9. 4.]
