NumPy, short for Numerical Python, is a powerful library in Python that provides support for large, multi-dimensional arrays and matrices.
Numpy Functions
Mathematical Functions
- numpy.sin() 
sin(x, /[, out, where, casting, order, ...]) - Computes the trigonometric sine of each element in the input array, element-wise.
 - numpy.cos() 
cos(x, /[, out, where, casting, order, ...]) - Computes the trigonometric cosine of each element in the input array, element-wise.
 - numpy.tan() 
tan(x, /[, out, where, casting, order, ...]) - Computes the trigonometric tangent of each element in the input array, element-wise.
 - numpy.arcsin() 
arcsin(x, /[, out, where, casting, order, ...]) - Computes the inverse sine (arcsin) of each element in the input array, element-wise.
 - numpy.asin() 
asin(x, /[, out, where, casting, order, ...]) - Alias for 
arcsin(), computing the inverse sine element-wise. - numpy.arccos() 
arccos(x, /[, out, where, casting, order, ...]) - Computes the inverse cosine (arccos) of each element in the input array, element-wise.
 - numpy.acos() 
acos(x, /[, out, where, casting, order, ...]) - Alias for 
arccos(), computing the inverse cosine element-wise. - numpy.arctan() 
arctan(x, /[, out, where, casting, order, ...]) - Computes the inverse tangent (arctan) of each element in the input array, element-wise.
 - numpy.atan() 
atan(x, /[, out, where, casting, order, ...]) - Alias for 
arctan(), computing the inverse tangent element-wise. - numpy.hypot() 
hypot(x1, x2, /[, out, where, casting, ...]) - Computes the hypotenuse of a right triangle given its two perpendicular sides, element-wise.
 - numpy.arctan2() 
arctan2(x1, x2, /[, out, where, casting, ...]) - Computes the element-wise inverse tangent of 
x1/x2, determining the correct quadrant. - numpy.atan2() 
atan2(x1, x2, /[, out, where, casting, ...]) - Alias for 
arctan2(), computing the inverse tangent ofx1/x2with quadrant correction. - numpy.degrees() 
degrees(x, /[, out, where, casting, order, ...]) - Converts input angles from radians to degrees, element-wise.
 - numpy.radians() 
radians(x, /[, out, where, casting, order, ...]) - Converts input angles from degrees to radians, element-wise.
 - numpy.unwrap() 
unwrap(p[, discont, axis, period]) - Unwraps a phase angle array by removing discontinuities exceeding a given threshold.
 - numpy.deg2rad() 
deg2rad(x, /[, out, where, casting, order, ...]) - Converts input angles from degrees to radians, equivalent to 
numpy.radians(). - numpy.rad2deg() 
rad2deg(x, /[, out, where, casting, order, ...]) - Converts input angles from radians to degrees, equivalent to 
numpy.degrees(). 
Hyperbolic Functions
- numpy.sinh() 
sinh(x, /[, out, where, casting, order, ...]) - Computes the hyperbolic sine of each element in the input array, element-wise.
 - numpy.cosh() 
cosh(x, /[, out, where, casting, order, ...]) - Computes the hyperbolic cosine of each element in the input array, element-wise.
 - numpy.tanh() 
tanh(x, /[, out, where, casting, order, ...]) - Computes the hyperbolic tangent of each element in the input array, element-wise.
 - numpy.arcsinh() 
arcsinh(x, /[, out, where, casting, order, ...]) - Computes the inverse hyperbolic sine (arsinh) of each element in the input array, element-wise.
 - numpy.asinh() 
asinh(x, /[, out, where, casting, order, ...]) - Alias for 
arcsinh(), computing the inverse hyperbolic sine element-wise. - numpy.arccosh() 
arccosh(x, /[, out, where, casting, order, ...]) - Computes the inverse hyperbolic cosine (arcosh) of each element in the input array, element-wise.
 - numpy.acosh() 
acosh(x, /[, out, where, casting, order, ...]) - Alias for 
arccosh(), computing the inverse hyperbolic cosine element-wise. - numpy.arctanh() 
arctanh(x, /[, out, where, casting, order, ...]) - Computes the inverse hyperbolic tangent (artanh) of each element in the input array, element-wise.
 - numpy.atanh() 
atanh(x, /[, out, where, casting, order, ...]) - Alias for 
arctanh(), computing the inverse hyperbolic tangent element-wise. 
Rounding Functions
- numpy.round() 
round(a[, decimals, out]) - Rounds elements in an array to the specified number of decimal places, using standard rounding rules.
 - numpy.around() 
around(a[, decimals, out]) - Rounds an array to the given number of decimals, functionally similar to 
numpy.round(). - numpy.rint() 
rint(x, /[, out, where, casting, order, ...]) - Rounds each element of the array to the nearest integer, preserving the floating-point type.
 - numpy.fix() 
fix(x[, out]) - Rounds each element towards zero, effectively truncating the decimal part.
 - numpy.floor() 
floor(x, /[, out, where, casting, order, ...]) - Computes the largest integer less than or equal to each element, rounding down.
 - numpy.ceil() 
ceil(x, /[, out, where, casting, order, ...]) - Computes the smallest integer greater than or equal to each element, rounding up.
 - numpy.trunc() 
trunc(x, /[, out, where, casting, order, ...]) - Truncates each element of the array by removing its fractional part, effectively rounding towards zero.
 
Sums, Products, Differences Functions
- numpy.prod() 
prod(a[, axis, dtype, out, keepdims, ...]) - Computes the product of all elements along the specified axis.
 - numpy.sum() 
sum(a[, axis, dtype, out, keepdims, ...]) - Computes the sum of all elements along the specified axis.
 - numpy.nanprod() 
nanprod(a[, axis, dtype, out, keepdims, ...]) - Computes the product of array elements along the specified axis, treating NaN values as 1.
 - numpy.nansum() 
nansum(a[, axis, dtype, out, keepdims, ...]) - Computes the sum of array elements along the specified axis, treating NaN values as 0.
 - numpy.cumsum() 
cumsum(a[, axis, dtype, out]) - Computes the cumulative sum along the specified axis.
 - numpy.cumprod() 
cumprod(a[, axis, dtype, out]) - Computes the cumulative product along the specified axis.
 - numpy.nancumsum() 
nancumsum(a[, axis, dtype, out]) - Computes the cumulative sum along the specified axis, treating NaN values as 0.
 - numpy.nancumprod() 
nancumprod(a[, axis, dtype, out]) - Computes the cumulative product along the specified axis, treating NaN values as 1.
 - numpy.diff() 
diff(a[, n, axis, prepend, append]) - Computes the n-th discrete difference along the specified axis.
 - numpy.ediff1d() 
ediff1d(ary[, to_end, to_begin]) - Computes the differences between consecutive elements in a flattened array.
 - numpy.gradient() 
gradient(f, *varargs[, axis, edge_order]) - Computes the gradient of an N-dimensional array, approximating derivatives.
 - numpy.cross() 
cross(a, b[, axisa, axisb, axisc, axis]) - Computes the cross product of two vectors or arrays of vectors.
 - numpy.trapezoid() 
trapezoid(y[, x, dx, axis]) - Computes the numerical integral along the specified axis using the trapezoidal rule.
 
Exponents and Logarithm Functions
- numpy.exp() 
exp(x, /[, out, where, casting, order, ...]) - Computes the exponential of all elements in the input array, i.e., 
e^x, whereeis Euler’s number. - numpy.expm1() 
expm1(x, /[, out, where, casting, order, ...]) - Computes 
exp(x) - 1for all elements in the array, providing higher precision for small values ofx. - numpy.exp2() 
exp2(x, /[, out, where, casting, order, ...]) - Computes 
2^xfor each element in the input array. - numpy.log() 
log(x, /[, out, where, casting, order, ...]) - Computes the natural logarithm (base 
e) of each element in the input array. - numpy.log10() 
log10(x, /[, out, where, casting, order, ...]) - Computes the base-10 logarithm of the input array, element-wise.
 - numpy.log2() 
log2(x, /[, out, where, casting, order, ...]) - Computes the base-2 logarithm of each element in the input array.
 - numpy.log1p() 
log1p(x, /[, out, where, casting, order, ...]) - Computes 
log(1 + x)for each element in the input array, providing greater precision for small values ofx. - numpy.logaddexp() 
logaddexp(x1, x2, /[, out, where, casting, ...]) - Computes the logarithm of the sum of exponentials, i.e., 
log(exp(x1) + exp(x2)), useful for numerical stability. - numpy.logaddexp2() 
logaddexp2(x1, x2, /[, out, where, casting, ...]) - Computes the logarithm of the sum of exponentials in base-2, i.e., 
log2(2^x1 + 2^x2), useful for numerical stability in binary calculations. 
Special Functions
- numpy.i0() 
i0(x) - Computes the modified Bessel function of the first kind, order 0, for each element in the input array.
 - numpy.sinc() 
sinc(x) - Computes the normalized sinc function, defined as 
sin(πx) / (πx), element-wise. 
Floating Point Functions
- numpy.signbit() 
signbit(x, /[, out, where, casting, order, ...]) - Returns 
Truefor each element where the sign bit is set (i.e., values less than zero), element-wise. - numpy.copysign() 
copysign(x1, x2, /[, out, where, casting, ...]) - Returns a value with the magnitude of 
x1and the sign ofx2, element-wise. - numpy.frexp() 
frexp(x[, out1, out2], / [[, out, where, ...]) - Decomposes each element in 
xinto its mantissa and exponent, returning two separate arrays. - numpy.ldexp() 
ldexp(x1, x2, /[, out, where, casting, ...]) - Computes 
x1 * 2**x2for each element, effectively performing the inverse offrexp(). - numpy.nextafter() 
nextafter(x1, x2, /[, out, where, casting, ...]) - Returns the next representable floating-point value after 
x1moving towardsx2, element-wise. - numpy.spacing() 
spacing(x, /[, out, where, casting, order, ...]) - Returns the distance between 
xand the nearest adjacent representable floating-point number. 
Rational Routine Functions
- numpy.lcm() 
lcm(x1, x2, /[, out, where, casting, order, ...]) - Computes the lowest common multiple (LCM) of the absolute values of 
x1andx2, element-wise. - numpy.gcd() 
gcd(x1, x2, /[, out, where, casting, order, ...]) - Computes the greatest common divisor (GCD) of the absolute values of 
x1andx2, element-wise. 
Arithmetic Functions
- numpy.add() 
add(x1, x2, /[, out, where, casting, order, ...]) - Adds two arrays element-wise.
 - numpy.reciprocal() 
reciprocal(x, /[, out, where, casting, ...]) - Computes the reciprocal (1/x) of each element in the input array, element-wise.
 - numpy.positive() 
positive(x, /[, out, where, casting, order, ...]) - Returns the numerical positive value of each element, element-wise.
 - numpy.negative() 
negative(x, /[, out, where, casting, order, ...]) - Computes the numerical negative of each element, element-wise.
 - numpy.multiply() 
multiply(x1, x2, /[, out, where, casting, ...]) - Multiplies two arrays element-wise.
 - numpy.divide() 
divide(x1, x2, /[, out, where, casting, ...]) - Divides the elements of one array by another, element-wise.
 - numpy.power() 
power(x1, x2, /[, out, where, casting, ...]) - Computes the exponentiation of elements in 
x1raised to the power of elements inx2, element-wise. - numpy.pow() 
pow(x1, x2, /[, out, where, casting, order, ...]) - Alias for 
numpy.power(), computing exponentiation element-wise. - numpy.subtract() 
subtract(x1, x2, /[, out, where, casting, ...]) - Subtracts the elements of one array from another, element-wise.
 - numpy.true_divide() 
true_divide(x1, x2, /[, out, where, ...]) - Performs element-wise true division, always returning floating-point results.
 - numpy.floor_divide() 
floor_divide(x1, x2, /[, out, where, ...]) - Performs element-wise division and rounds down the result to the nearest integer.
 - numpy.float_power() 
float_power(x1, x2, /[, out, where, ...]) - Raises elements in 
x1to powers inx2, ensuring floating-point precision. - numpy.fmod() 
fmod(x1, x2, /[, out, where, casting, ...]) - Computes the remainder of division, using the same sign as 
x1, element-wise. - numpy.mod() 
mod(x1, x2, /[, out, where, casting, order, ...]) - Computes the remainder of division, element-wise, following Python’s modulus behavior.
 - numpy.modf() 
modf(x[, out1, out2], / [[, out, where, ...]) - Splits each element into its fractional and integer parts, element-wise.
 - numpy.remainder() 
remainder(x1, x2, /[, out, where, casting, ...]) - Computes the remainder of division, using the same sign as 
x2, element-wise. - numpy.divmod() 
divmod(x1, x2[, out1, out2], / [[, out, ...]) - Computes the quotient and remainder of element-wise division, returning both results.
 
Complex Number Functions
- numpy.angle() 
angle(z[, deg]) - Returns the phase angle (in radians by default) of a complex number. If 
deg=True, the result is in degrees. - numpy.real() 
real(val) - Extracts the real part of a complex number, element-wise.
 - numpy.imag() 
imag(val) - Extracts the imaginary part of a complex number, element-wise.
 - numpy.conj() 
conj(x, /[, out, where, casting, order, ...]) - Computes the complex conjugate of each element in the array, replacing 
a + bjwitha - bj. - numpy.conjugate() 
conjugate(x, /[, out, where, casting, ...]) - Alias for 
numpy.conj(), returning the complex conjugate element-wise. 
Extrema Finding Functions
- numpy.maximum() 
maximum(x1, x2, /[, out, where, casting, ...]) - Computes the element-wise maximum of two arrays.
 - numpy.max() 
max(a[, axis, out, keepdims, initial, where]) - Returns the maximum value of an array or along a specified axis.
 - numpy.amax() 
amax(a[, axis, out, keepdims, initial, where]) - Alias for 
numpy.max(), returning the maximum of an array along an axis. - numpy.fmax() 
fmax(x1, x2, /[, out, where, casting, ...]) - Computes the element-wise maximum, ignoring NaN values (NaNs are replaced by non-NaN values).
 - numpy.nanmax() 
nanmax(a[, axis, out, keepdims, initial, where]) - Computes the maximum of an array along a specified axis, ignoring NaN values.
 - numpy.minimum() 
minimum(x1, x2, /[, out, where, casting, ...]) - Computes the element-wise minimum of two arrays.
 - numpy.min() 
min(a[, axis, out, keepdims, initial, where]) - Returns the minimum value of an array or along a specified axis.
 - numpy.amin() 
amin(a[, axis, out, keepdims, initial, where]) - Alias for 
numpy.min(), returning the minimum of an array along an axis. - numpy.fmin() 
fmin(x1, x2, /[, out, where, casting, ...]) - Computes the element-wise minimum, ignoring NaN values (NaNs are replaced by non-NaN values).
 - numpy.nanmin() 
nanmin(a[, axis, out, keepdims, initial, where]) - Computes the minimum of an array along a specified axis, ignoring NaN values.
 
Misc Functions
- numpy.convolve() 
convolve(a, v[, mode]) - Computes the discrete, linear convolution of two one-dimensional sequences.
 - numpy.clip() 
clip(a[, a_min, a_max, out, min, max]) - Clips (limits) the values in an array to the interval 
[a_min, a_max], replacing values outside this range. - numpy.sqrt() 
sqrt(x, /[, out, where, casting, order, ...]) - Computes the non-negative square root of each element in the array, element-wise.
 - numpy.cbrt() 
cbrt(x, /[, out, where, casting, order, ...]) - Computes the cube root of each element in the array, element-wise.
 - numpy.square() 
square(x, /[, out, where, casting, order, ...]) - Computes the square of each element in the array, element-wise.
 - numpy.absolute() 
absolute(x, /[, out, where, casting, order, ...]) - Computes the absolute value of each element in the array, element-wise.
 - numpy.fabs() 
fabs(x, /[, out, where, casting, order, ...]) - Computes the absolute value of each element, similar to 
absolute()but always returning a floating-point array. - numpy.sign() 
sign(x, /[, out, where, casting, order, ...]) - Returns 
-1for negative numbers,0for zero, and1for positive numbers, element-wise. - numpy.heaviside() 
heaviside(x1, x2, /[, out, where, casting, ...]) - Computes the Heaviside step function, returning 
0for negative values,1for positive values, andx2for zero. - numpy.nan_to_num() 
nan_to_num(x[, copy, nan, posinf, neginf]) - Replaces NaNs with zero, positive infinity with a large finite number, and negative infinity with a small finite number, or user-defined values.
 - numpy.real_if_close() 
real_if_close(a[, tol]) - Returns the real part of a complex array if all imaginary parts are close to zero within a given tolerance.
 - numpy.interp() 
interp(x, xp, fp[, left, right, period]) - Performs one-dimensional linear interpolation for monotonically increasing sample points.
 - numpy.bitwise_count() 
bitwise_count(x, /[, out, where, casting, ...]) - Computes the number of 
1-bits in the absolute value ofx, element-wise. 
